当前位置:范文网>教育范文>教学计划>高一数学教学计划

高一数学教学计划

时间:2021-08-21 11:27:02 教学计划 我要投稿
  • 相关推荐

高一数学教学计划

  时间流逝得如此之快,我们又将迎来新的教学工作,做好教学计划,让自己成为更有竞争力的人吧。为了让您不再有写不出教学计划的苦闷,以下是小编帮大家整理的高一数学教学计划,供大家参考借鉴,希望可以帮助到有需要的朋友。

高一数学教学计划

高一数学教学计划1

  一、指导思想:

  在我校整体建构和谐教学模式下,使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

  1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  二、教材特点:

  我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(a版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:

  1.“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

  2.“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

  3.“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

  4.“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

  三、教法分析:

  1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

  2.通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

  3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

  四、学情分析:

  高一班学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

  五、教学措施:

  1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

  2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

  3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

  4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

  5、自始至终贯彻整体建构,和谐教学。

  6、重视数学应用意识及应用能力的培养。

高一数学教学计划2

  一、指导思想

  准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。

  二、高一上册数学教学教材特点:

  我们所使用的教材是人教版《普通高中课程标准实验教科书数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承、借签、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有如下特点:

  1.亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情.

  2.问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神.

  3.科学性与思想性:通过不同数学内容的联系与启发,强调类比、化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神.

  4.时代性与应用性:以具有时代感和现实感的素材创设情境,加强数学活动,发展应用意识.

  三、高一上册数学教学教法分析:

  1.选取与内容密切相关的、典型的、丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的.

  2.通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式.

  3.在教学中强调类比、化归等数学思想方法,尽可能养成其逻辑思维的习惯.

  四、学情分析

  高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着.他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长.面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望.我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡.从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法.

  五、高一上册数学教学教学措施:

  1、激发学生的学习兴趣.由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

  2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考.

  3、加强培养学生的逻辑思维能力和解决实际问题的能力,提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育.

  4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力.

  5、重视数学应用意识及应用能力的培养.

高一数学教学计划3

  一、学情分析

  这节课是在学生已经学过的二维的平面直角坐标系的基础上的推广,是以后学习空间向量等内容的基础。

  二、教学目标

  1. 让学生经历用类比的数学思想方法探索空间直角坐标系的建立方法,进一步体会数学概念、方法产生和发展的过程,学会科学的思维方法。

  2. 理解空间直角坐标系与点的坐标的意义,掌握由空间直角坐标系内的点确定其坐标或由坐标确定其在空间直角坐标系内的点,认识空间直角坐标系中的点与坐标的关系。

  3. 进一步培养学生的空间想象能力与确定性思维能力。

  三、教学重点:在空间直角坐标系中点的坐标的确定。

  四、教学难点:通过建立空间直角坐标系利用点的坐标来确定点在空间内的位置

  五、教学过程

  (一)、问题情景

  1. 确定一个点在一条直线上的位置的方法。

  2. 确定一个点在一个平面内的位置的方法。

  3. 如何确定一个点在三维空间内的位置?

  例:如图,在房间(立体空间)内如何确定一个同学的头所在位置?

  在学生思考讨论的基础上,教师明确:确定点在直线上,通过数轴需要一个数;确定点在平面内,通过平面直角坐标系需要两个数。那么,要确定点在空间内,应该需要几个数呢?通过类比联想,容易知道需要三个数。要确定同学的头的位置,知道同学的头到地面的距离、到相邻的两个墙面的距离即可。

  (此时学生只是意识到需要三个数,还不能从坐标的角度去思考,因此,教师在这儿要重点引导)

  教师明晰:在地面上建立直角坐标系xOy,则地面上任一点的位置只须利用x,y就可确定。为了确定不在地面内的电灯的位置,须要用第三个数表示物体离地面的高度,即需第三个坐标z.因此,只要知道电灯到地面的距离、到相邻的两个墙面的距离即可。例如,若这个电灯在平面xOy上的射影的两个坐标分别为4和5,到地面的距离为3,则可以用有序数组(4,5,3)确定这个电灯的位置(如图26-3)。

  这样,仿照初中平面直角坐标系,就建立了空间直角坐标系O-xyz,从而确定了空间点的位置。

  (二)、建立模型

  1. 在前面研究的基础上,先由学生对空间直角坐标系予以抽象概括,然后由教师给出准确的定义。

  从空间某一个定点O引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系O-xyz,点O叫作坐标原点,x轴、y轴、z轴叫作坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xOy平面,yOz平面,zOx平面。

  教师进一步明确:

  (1)在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,若中指指向z轴的正方向则称这个坐标系为右手坐标系,课本中建立的坐标系都是右手坐标系。

  (2)将空间直角坐标系O-xyz画在纸上时,x轴与y轴、x轴与z轴成135,而y轴垂直于z轴,y轴和z轴的单位长度相等,但x轴上的单位长度等于y轴和z轴上的单位长度的 ,这样,三条轴上的单位长度直观上大致相等。

  2. 空间直角坐标系O-xyz中点的坐标。

  思考:在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)有什么样的对应关系?

  在学生充分讨论思考之后,教师明确:

  (1)过点A作三个平面分别垂直于x轴,y轴,z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,这样,对空间任意点A,就定义了一个有序数组(x,y,z)。

  (2)反之,对任意一个有序数组(x,y,z),按照刚才作图的相反顺序,在坐标轴上分别作出点P,Q,R,使它们在x轴、y轴、z轴上的坐标分别是x,y,z,再分别过这些点作垂直于各自所在的坐标轴的平面,这三个平面的交点就是所求的点A.

  这样,在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)之间就建立了一种一一对应关系:A (x,y,z)。

  教师进一步指出:空间直角坐标系O-xyz中任意点A的坐标的概念

  对于空间任意点A,作点A在三条坐标轴上的射影,即经过点A作三个平面分别垂直于x轴、y轴和z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,我们把有序数组(x,y,z)叫作点A的坐标,记为A(x,y,z)。

  (三)、例 题 与 练 习

  1. 课本135页例1.

  注意:在分析中紧扣坐标定义,强调三个步骤,第一步从原点出发沿x轴正方向移动5个单位,第二步沿与y轴平行的方向向右移动4个单位,第三步沿与z轴平行的方向向上移动6个单位(如图26-5)。

  2. 课本135页例2

  探究: (1)在空间直角坐标系中,坐标平面xOy,xOz,yOz上点的坐标有什么特点?

  (2)在空间直角坐标系中,x轴、y轴、z轴上点的坐标有什么特点?

  解:(1)xOy平面、xOz平面、yOz平面内的点的坐标分别形如(x,y,0),(x,0,z),(0,y,z)。

  (2)x轴、y轴、z轴上点的坐标分别形如(x,0,0),(0,y,0),(0,0,z)。

  3. 已知长方体ABCD-ABCD的边长AB=12,AD=8,AA=5,以这个长方体的顶点A为坐标原点,射线AB,AD,AA分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标。

  注意:此题可以由学生口答,教师点评。

  解:A(0,0,0),B(12,0,0),D(0,8,0),A(0,0,5),C(12,8,0),B(12,0,5),D(0,8,5),C(12,8,5)。

  讨论:若以C点为原点,以射线CB,CD,CC方向分别为x,y,z轴的正半轴,建立空间直角坐标系,那么各顶点的坐标又是怎样的呢?

  得出结论:建立不同的坐标系,所得的同一点的坐标也不同。

  [练 习]

  1. 在空间直角坐标系中,画出下列各点:A(0,0,3),B(1,2,3),C(2,0,4),D(-1,2,-2)。

  2. 已知:长方体ABCD-ABCD的边长AB=12,AD=8,AA=7,以这个长方体的顶点B为坐标原点,射线AB,BC,BB分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标。

  3. 写出坐标平面yOz上yOz平分线上的点的坐标满足的条件。

  (四)、拓展延伸

  分别写出点(1,1,1)关于各坐标轴和各个坐标平面对称的点的坐标。

  六、评价设计

  1、 练习 : 课本P136. 1、2、3

  2、 课堂作业: 课本P138. 1、2

高一数学教学计划4

  一、具体目标:

  1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学

  、本学期要达到的教学目标

  1.双基要求:

  在基础知识方面让学生掌握高一有关的概念、性质、法则、公式、定理以及由其内容反映出来的数学思想和方法。在基本技能方面能按照一定的程序与步骤进行运算、处理数据、能使用计数器及简单的推理、画图。

  2.能力培养:

  能运用数学概念、思想方法,辨明数学关系,形成良好的思维品质;会根据法则、公式正确的进行运算、处理数据,并能根据问题的情景设计运算途径;会提出、分析和解决简单的带有实际意义的或在相关学科、生产和生活的数学问题,并进行交流,形成数学的意思;从而通过独立思考,会从数学的角度发现和提出问题,进行探索和研究。

  3. 思想教育:

  培养高一学生,学习数学的兴趣、信心和毅力及实事求是的科学态度,勇于探索创新的精神,及欣赏数学的美学价值,并懂的数学来源于实践又反作用于实践的观点;数学中普遍存在的对立统一、运动变化、相互联系、相互转化等观点。

  三、进度授课计划及进度表

周 次





内 容



重 点、难 点



预备周



3



学法指导



掌握高中数学的学习方法,了解高考



第1周9.3~9.9



5



集合的含义与表示、集合间的基本关系、集合的基本运算



会求两个简单集合的并集与交集;会求给定子集的补集;能使用Venn图表达集合的关系及运算。难点:理解概念



第2周9.10~9.16



5



函数的概念、



函数的表示法



会求一些简单函数的定义域和值域;能简单应用



第3周9.17~9.23



5



单调性与最值、奇偶性、实习、小结



学会运用函数图象理解和研究函数的性质,理解函数单调性、最大(小)值及几何意义



第4周9.24~9.30



5



指数与指数幂的运算、指数函数及其性质



掌握幂的运算;探索并理解指数函数的单调性与特殊点。难点:理解概念



第5周10.1~10.7



5



国庆放假




第6周10.8~10.14



5



9月月考、对数与对数运算、对数函数及其性质



理解对数的概念及其运算性质,知道用换底公式;探索并了解对数函数单调性与特殊点;知道指数函数与对数函数互为反函数



第7周10.15~10.21



5



幂函数



从五个具体的幂函数(y=x,y=x2,y=x3,y=x-1,y=x1/2)图象中认识幂函数的一些性质



第8周10.22~10.28



5



方程的根与函数零点,二分法求方程近似解,



能够借助计算器用二分法求相应方程的近似解;



第9周10.29~11.4



5



几类不同增长的模型、函数模型应用举例



对比指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义



第10周



11.5~11.11



?

期中复习及考试



分章归纳复习+1套模拟测试



第11周



11.12~11.18



5



空间几何体的结构三视图和直观图几何体的表面积,体积



认识柱、锥、台、球及其简单组合体的结构特征;会用斜二侧法画出它们的直观图;了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。



第12周



11.19~11.25



5



空间点线面位置关系、线面平行判定与性质



理解空间几何的定义和公理,认识和理解空间中线面平行的有关性质与判定



第13周



11.26~12.2



5



线面垂直判定与性质小结



通过直观感知、操作确认、思辨论证,认识和理解空间中线面垂直的有关性质与判定;



第14周



12.3~12.9



5



直线的倾斜角与斜率、直线的方程



掌握斜率公式;能根据斜率判定两条直线平行或垂直;探索并掌握直线方程的几种形式



第15周



12.10~12.16



5



直线交点坐标与距离公式、小结



能用解方程组的方法求两直线的交点坐标;探索并掌握两点间、点到直线的距离公式



第16周



12.17~12.23



5



圆的方程、直线与圆的位置关系



探索并掌握圆的标准方程与一般方程;根据方程判断直线与圆、圆与圆的位置关系



第17周



12.24~12.30



5



空间直角坐标系、小结



会用空间直角坐标系刻画点的位置;探索并得出空间两点间的距离公式



第18-22周12.31~2.3



5



期末复习及考试



分章归纳复习,模拟测试



高一数学教学计划5

  教学计划可以帮助教师理清教学思路,提高课堂效率。

  ●教学目标

  (一)教学知识点

  1.了解全集的意义.

  2.理解补集的概念.

  (二)能力训练要求

  1.通过概念教学,提高学生逻辑思维能力.

  2.通过教学,提高学生分析、解决问题能力.

  (三)德育渗透目标 渗透相对的观点.

  ●教学重点 补集的概念.

  ●教学难点

  补集的有关运算.

  ●教学方法 发现式教学法 通过引入实例,进而对实例的分析,发现寻找其一般结果,归纳其普遍规律.

  ●教具准备

  第一张:(记作1.2.2 A)

  ●教学过程 Ⅰ.复习回顾

  1.集合的子集、真子集如何寻求?其个数分别是多少? 2.两个集合相等应满足的条件是什么?

  Ⅱ.讲授新课 [师]事物都是相对的,集合中的部分元素与集合之间关系就是部分与整体的关系.

  请同学们由下面的例子回答问题: 投影片:(1.2.2 A)

  [生]集合B就是集合S中除去集合A之后余下来的集合. 即为如图阴影部分

  由此借助上图总结规律如下: 投影片:(1.2.2 B)

  Ⅳ.课时小结

  1.能熟练求解一个给定集合的补集.

  2.注意一些特殊结论在以后解题中的应用. Ⅴ.课后作业

高一数学教学计划6

  教学目标:

  知识与技能通过具体实例了解幂函数的图象和性质,并能进行简单的应用.

  过程与方法能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质.

  情感、态度、价值观体会幂函数的变化规律及蕴含其中的对称性.

  教学重点:

  重点从五个具体幂函数中认识幂函数的一些性质.

  难点画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律.

  教学程序与环节设计:

  材料一:幂函数定义及其图象.

  一般地,形如 的函数称为幂函数,其中 为常数.

  幂函数的定义来自于实践,它同指数函数、对数函数一样,也是基本初等函数,同样也是一种形式定义的函数,引导学生注意辨析.

  下面我们举例学习这类函数的一些性质.

  作出下列函数的图象:利用所学知识和方法尝试作出五个具体幂函数的图象,观察所图象,体会幂函数的变化规律.

  定义域

  值域

  奇偶性

  单调性

  定点

  师:引导学生应用画函数的性质画图象,如:定义域、奇偶性.

  师生共同分析,强调画图象易犯的错误.

  材料二:幂函数性质归纳.

  (1)所有的幂函数在(0,+)都有定义,并且图象都过点(1,1);

  (2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;

  (3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.

  例1、求下列函数的定义域;

  例2、比较下列两个代数值的大小:

  [例3]讨论函数 的定义域、奇偶性,作出它的图象,并根据图象说明函数的单调性.

  练习

  1.利用幂函数的性质,比较下列各题中两个幂的值的大小:

  2.作出函数 的图象,根据图象讨论这个函数有哪些性质,并给出证明.

  3.作出函数 和函数 的图象,求这两个函数的定义域和单调区间.

  4.用图象法解方程:

  1.如图所示,曲线是幂函数 在第一象限内的图象,已知 分别取 四个值,则相应图象依次为:.

  2.在同一坐标系内,作出下列函数的图象,你能发现什么规律?

高一数学教学计划7

  本学期担任高一5、6两班的数学教学工作,两班学生共有110人,初中的基础参差不齐,但两个班的学生整体水平还可以;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。

  一、教学目标.

  (一)情意目标

  (1)通过分析问题的方法的教学,培养学生 的学习的兴趣。

  (2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。

  (3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识

  (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

  (5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

  (6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。

  (二)能力要求

  1、培养学生记忆能力。

  (1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

  (3)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力。

  2、培养学生 的运算能力。

  (1)通过概率的训练,培养学生 的运算能力。

  (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生 的运算能力。

  (3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

  (4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

  (5)利用数形结合,另辟蹊径,提高学生运算能力。

  3、培养学生 的思维能力。

  (1)通过对简易逻辑的教学,培养学生 思维的周密性及思维的逻辑性。

  (2)通过不等式、函数的一题多解、多题一解,培养思维的灵活性和敏捷性,发展发散思维能力。

  (3)通过不等式、函数的引伸、推广,培养学生 的创造性思维。

  (4)加强知识的横向联系,培养学生 的数形结合的能力。

  (5)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。

  (三)知识目标

  1.集合、简易逻辑

  (1)理解集合、子集、补订、交集、交集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.

  (2)理解逻辑联结词"或"、"且"、"非"的含义.理解四种命题及其相互关系.掌握充分条件、必要条件及充要条件的意义.

  (3)掌握一元二次不等式、绝对值不等式的解法。

  2.函数

  (1)了解映射的概念,理解函数的概念.

  (2)了解函数的单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法.

  (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.

  (4)理解分数指数幂的概念,掌握有理指数幂的运算性质.掌握指数函数的概念、图像和性质.

  (5)理解对数的概念,掌握对数的运算性质.掌握对数函数的概念、图像和性质.

  (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.

  3.数列

  (1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.

  (2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题.

  (3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题.

  二、教学重点

  1、集合、子集、补集、交集、并集.一元二次不等式的解法

  四种命题.充分条件和必要条件.

  2.映射、函数、函数的单调性、反函数、指数函数、对数函数、函数的应用.

  3.等差数列及其通项公式.等差数列前n项和公式.

  等比数列及其通项公式.等比数列前n项和公式.

  三、教学难点

  1. 四种命题.充分条件和必要条件

  2. 反函数、指数函数、对数函数

  3. 等差、等比数列的性质

  四、工作措施.

  1、抓好课堂教学,提高教学效益。

  课堂教学是教学的主要环节,因此,抓好课堂教学是教学之根本,是大面积提高数学成绩的主途径。

  (1)、扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题、月考题。

  (2)、加大课堂教改力度,培养学生 的自主学习能力。最有效的学习是自主学习,因此,课堂教学要大力培养学生 自主探究的精神,通过“知识的产生,发展”,逐步形成知识体系;通过“知识质疑、展活”迁移知识、应用知识,提高能力。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。

高一数学教学计划8

  一 设计思想:

  函数与方程是中学数学的重要内容,是衔接初等数学与高等数学的纽带,再加上函数与方程还是中学数学四大数学思想之一,是具体事例与抽象思想相结合的体现,在教学过程中,我采用了自主探究教学法。通过教学情境的设置,让学生由特殊到一般,有熟悉到陌生,让学生从现象中发现本质,以此激发学生的成就感,激发学生的学习兴趣和学习热情。在现实生活中函数与方程都有着十分重要的应用,因此函数与方程在整个高中数学教学中占有非常重要的地位。

  二 教学内容分析:

  本节课是《普通高中课程标准》的新增内容之一,选自《普通高中课程标准实验教课书数学I必修本(A版)》第94-95页的第三章第一课时3.1.1方程的根与函数的的零点。

  本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形.它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3.1.2)加以应用,通过建立函数模型以及模型的求解(3.2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系.渗透“方程与函数”思想。

  总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。

  三 教学目标分析:

  知识与技能:

  1.结合方程根的几何意义,理解函数零点的定义;

  2.结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;

  3.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间 的方法

  情感、态度与价值观:

  1.让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;

  2.培养学生锲而不舍的探索精神和严密思考的良好学习习惯;

  3.使学生感受学习、探索发现的乐趣与成功感

  教学重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。

  教学难点:发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。

  四 教学准备

  导学案,自主探究,合作学习,电子交互白板。

  五 教学过程设计:

  (一)、问题引人:

  请同学们思考这个问题。用屏幕显示判断下列方程是否有实根,有几个实根?

  (1)

  ;(2)

  ?

  学生活动:回答,思考解法。

  教师活动:第二个方程我们不会解怎么办?你是如何思考的?有什么想法?我们可以考虑将复杂问题简单化,将未知问题已知化,通过对第一个问题的研究,进而来解决第二个问题。对于第一个问题大家都习惯性地用代数的方法去解决,我们应该打破思维定势,走出自己给自己画定的牢笼!这样我们先把所依赖的拐杖丢掉,假如第一个方程你不会解,也不会应用判别式,你要怎样判断其实根个数呢?

  学生活动:思考作答。

  设计意图:通过设疑,让学生对高次方程的根产生好奇。

  (二)、概念形成:

  预习展示1:

  你能通过观察二次方程的根及相应的二次函数图象,找出方程的根,图象与轴交点的坐标以及函数零点的关系吗?

  学生活动:观察图像,思考作答。

  教师活动:我们来认真地对比一下。用投影展示学生填写表格

一元二次方程







方程的根







二次函数







函数的图象







(简图)







图象与轴交点的坐标







函数的零点








?
???

?
???

?
???

  问题1:你能通过观察二次方程的根及相应的二次函数图象,找出方程的根,图象与

  轴交点的坐标以及函数零点的关系吗?

  学生活动:得到方程的实数根应该是函数图象与x轴交点的横坐标的结论。

  教师活动:我们就把使方程 成立的实数x称做函数的零点.(引出零点的概念)

  根据零点概念,提出问题,零点是点吗?零点与函数方程的根有何关系?

  学生活动:经过观察表格,得出(请学生总结)

  1)概念:函数的零点并不是“点”,它不是以坐标的形式出现,而是实数。例如函数的零点为x=-1,3

  2)函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标.

  3)方程有实数根函数的图象与轴有交点函数有零点。

  教师活动:引导学生仔细体会上述结论。

  再提出问题:如何并根据函数零点的意义求零点?

  学生活动:可以解方程而得到(代数法);

  可以利用函数的图象找出零点.(几何法).

  设计意图:由学生最熟悉的二次方程和二次函数出发,发现一般规律,并尝试的去总结零点,根与交点三者的关系。

  (三)、探究性质:

  (五)、探索研究(可根据时间和学生对知识的接受程度适当调整)

  讨论:请大家给方程的一个解的大约范围,看谁找得范围更小?

  [师生互动]

  师:把学生分成小组共同探究,给学生足够的自主学习时间,让学生充分研究,发挥其主观能动性。也可以让各组把这几个题做为小课题来研究,激发学生学习潜能和热情。老师用多媒体演示,直观地演示根的存在性及根存在的区间大小情况。

  生:分组讨论,各抒己见。在探究学习中得到数学能力的提高

  第五阶段设计意图:

  一是为用二分法求方程的近似解做准备

  二是小组探究合作学习培养学生的创新能力和探究意识,本组探究题目就是为了培养学生的探究能力,此组题目具有较强的开放性,探究性,基本上可以达到上述目的。

  (六)、课堂小结:

  零点概念

  零点存在性的判断

  零点存在性定理的应用注意点:零点个数判断以及方程根所在区间

  (七)、巩固练习(略)

高一数学教学计划9

  本节课的教学内容,是指数函数的概念、性质及其简单应用。教学重点是指数函数的图像与性质。

  I这是指数函数在本章的位置。

  指数函数是学生在学习了函数的概念、图象与性质后,学习的第一个新的初等函数。它是一种新的函数模型,也是应用研究函数的一般方法研究函数的一次实践。指数函数的学习,一方面可以进一步深化对函数概念的理解,另一方面也为研究对数函数、幂函数、三角函数等初等函数打下基础。因此,本节课的学习起着承上启下的作用,也是学生体验数学思想与方法应用的过程。

  指数函数模型在贷款利率的计算以及考古中年代的测算等方面有着广泛地应用,与我们的日常生活、生产和科学研究有着紧密的联系,因此,学习这部分知识还有着一定的现实意义。

  Ⅱ.教学目标设置

  1。学生能从具体实例中概括指数函数典型特征,并用数学符号表示,建构指数函数的概念。

  2。学生通过自主探究,掌握指数函数的图象特征与性质,能够利用指数函数的性质比较两个幂的大小。

  3。学生运用数形结合的思想,经历从特殊到一般、具体到抽象的研究过程,体验研究函数的一般方法。

  4。在探究活动中,学生通过独立思考和合作交流,发展思维,养成良好思维习惯,提升自主学习能力。

  Ⅲ.学生学情分析

  授课班级学生为南京师大附中实验班学生。

  1。学生已有认知基础

  学生已经学习了函数的概念、图象与性质,对函数有了初步的认识。学生已经完成了指数取值范围的扩充,具备了进行指数运算的能力。学生已有研究一次函数、二次函数等初等函数的直接经验。学生数学基础与思维能力较好,初步养成了独立思考、合作交流、反思质疑等学习习惯。

  2。达成目标所需要的认知基础

  学生需要对研究的目标、方法和途径有初步的认识,需要具备较好的归纳、猜想和推理能力。

  3。难点及突破策略

  难点:1。 对研究函数的一般方法的认识。

  2。 自主选择底数不当导致归纳所得结论片面。

  突破策略:

  1。教师引导学生先明确研究的内容与方法,从总体上认识研究的目标与手段。

  2。组织汇报交流活动,展现思维过程,相互评价,相互启发,促进反思。

  3。对猜想进行适当地证明或说明,合情推理与演绎推理相结合。

  Ⅳ.教学策略设计

  根据学生已有学习基础,为提升学生的学习能力,本节课的教学,采用自主学习方式。通过教师引领学生经历研究函数及其性质的过程,认识研究的目标与策略,在研究的过程中逐渐完善研究的方法与手段。

  学生的自主学习,具体落实在三个环节:

  (1)建构指数函数概念时,学生自主举例,归纳特征,并用符号表示,讨论底数的取值范围,完善概念。

  (2)探究指数函数图象特征与性质时,学生自选底数,开展自主研究,并通过汇报交流相互提升。

  (3)性质应用阶段,学生自主举例说明指数函数性质的应用。

  研究函数的性质,可以从形和数两个方面展开。从图形直观和数量关系两个方面,经历从特殊到一般、具体到抽象的过程。借助具体的指数函数的图象,观察特征,发现函数性质,进而猜想、归纳一般指数函数的图象特征与性质,并适时应用函数解析式辅以必要的说明和证明。

  Ⅴ.教学过程设计

  1。创设情境建构概念

  师:我们已经学习了函数的概念、图象与性质,大家都知道函数可以刻画两个变量之间的关系。你能用函数的观点分析下面的例子吗?

  师:大家知道细胞分裂的规律吗?(出示情境问题)

  [情境问题1]某细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,……如果细胞分裂x次,相应的细胞个数为y,如何描述这两个变量的关系?

  [情境问题2]某种放射性物质不断变化为其他物质,每经过一年,这种物质剩余的质量是原来的84%。如果经过x年,该物质剩余的质量为y,如何描述这两个变量的关系?

  [师生活动]引导学生分析,找到两个变量之间的函数关系,并得到解析式y=2x和y=0。84x。

  师:这样的函数你见过吗?是一次函数吗?二次函数?这样的函数有什么特点?你能再举几个例子吗?

  〖问题1类似的函数,你能再举出一些例子吗?这些函数有什么共同特点?能否写成一般形式?

  [设计意图]通过列举生活中指数函数的具体例子,感受指数函数与实际生活的联系。引导学生从具体实例中概括典型特征,初步形成指数函数的概念,并用数学符号表示。初步得到y=ax这个形式后,引导学生关注底数的取值范围,完成概念建构。指数范围扩充到实数后,关注x∈R时,y=ax是否始终有意义,因此规定a>0。a≠1并不是必须的,常函数在高等数学里是基本函数,也有重要的意义。为了使指数函数与对数函数能构成反函数,规定a≠1。此处不需对此解释,只要补充说“1的任何次方总是1,所以通常还规定a≠1”。

  [师生活动]学生举例,教师引导学生观察,其共同特点是自变量在指数位置,从而初步建立函数模型y=ax。

  [教学预设]学生能举出具体的例子——y=3x,y=0。5x…。如出现y=(-2)x最好,更便于引发对a的讨论,但一般不会出现。进而提出这类函数一般形式y=ax。

  Ⅵ.教后反思回顾

  一、对于指数函数概念的认识

  指数函数是一种函数模型,其基本特征是自变量在指数位置。底数取值范围有规定,使得这一模型形式简单又不失本质。不必纠结于“y=22x是否为指数函数”,把重点放在概念的合理性的理解以及体会模型思想。

  二、对于培养学生思维习惯的考虑

  在学生自主探索的过程中,教师应注意培养学生良好的思维习惯。实际上,选择底数a的数据的大小和数量,需要对指数函数的性质有预判;从列表到作图的过程中,都可以感受到指数函数单调性等性质;观察并归纳性质,既需要特殊到一般的推理模式,也应养成有序进行观察和归纳的良好的思维习惯。对所归纳的指数函数的.性质,应根据学生已有的知识水平或教学要求进行证明或合理的说明。学生不仅学到了数学知识,也初步体验了研究问题的基本方法。

  三、关于设计定位的反思

  本节课的教学设计,力图体现因材施教原则。不同的学情下,教师应采用不同的教学策略。如果学生基础相对薄弱,问题的提出可以分层次进行。另外,注意通过“你是怎么想的?”“你同意他的意见吗?为什么”等问话形式,促使学生暴露思维过程。

高一数学教学计划10

  指导思想:

  (1)随着素质教育的深入展开,《课程方案》提出了“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人”的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。

  (2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。

  (3)根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

  (4)使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  (5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。

  (6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。

  学情分析及相关措施:

  高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。

  具体措施如下:

  (1)注意研究学生,做好初、高中学习方法的衔接工作。

  (2)集中精力打好基础,分项突破难点.所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。

  (3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。

  (4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备

  (5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。

  (6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。

  教学进度安排:

  周 次

  时

  内 容

  重 点、难 点

  第1周

  9.2~9.6

  集合的含义与表示、

  集合间的基本关系、

  会求两个简单集合的并集与交集;会求给定子集的补集;

  难点:理解概念

  第2周

  9.7~9.13

  集合的基本运算

  函数的概念、

  函数的表示法

  能使用Venn图表达集合的关系及运算,会求一些简单函数的定义域和值域;能简单应用

  第3周

  9.14~9.20

  单调性与最值、

  奇偶性、实习、小结

  学会运用函数图象理解和研究函数的性质,理解函数单调性、最大(小)值及几何意义

  第4周

  9.21~9.27

  指数与指数幂的运算、

  指数函数及其性质

  掌握幂的运算;探索并理解指数函数的单调性与特殊点。难点:理解概念

  第5周

  9.28~10.4

  (9月月考国庆放假)

  第6周

  10.5~10.11

  对数与对数运算、

  对数函数及其性质

  理解对数的概念及其运算性质,知道用换底公式;探索并了解对数函数单调性与特殊点;知道指数函数与对数函数互为反函数

  第7周

  10.12~10.18

  幂函数

  从五个具体的幂函数(y=x,y=x2, y=x3, y=x-1, y=x1/2)图象中认识幂函数的一些性质

  第8周

  10.19~10.25

  方程的根与函数零点,

  二分法求方程近似解,

  能够借助计算器用二分法求相应方程的近似解;

  第9周

  10.26~11.1

  几类不同增长的模型、函数模型应用举例

  对比指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义

  第10周

  11.2~11.8

  期中复习及考试

  分章归纳复习+1套模拟测试

  第11周

  11.9~11.15

  任意角和弧度制

  任意角的三角函数

  了解任意角的概念和弧度制,能进行弧度和度的互化;借助单位圆理解任意角三角函数的定义

  第12周

  11.16~11.22

  三角函数的诱导公式

  三角函数的图像和性质

  借助三角函数线推导出诱导公式,能画出y=sinx,y=cosx,y=tanx的图像,了解三角函数的周期性

  第13周

  11.23~11.29

  函数y=Asin(wx+q)的图像

  借助图像理解正弦函数余弦函数正切函数的性质,借助计算机画出图像观察A w q对函数图像变化的影响

  第14周

  11.30~12.6

  三角函数模型的简单应用 单元考试

  会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化的重要函数模型

  第15周

  12.7~12.13

  平面向量的实际背景及基本概念,平面向量的线性运算

  掌握向量加、减法的运算,理解其几何意义掌握数乘运算及两个向量共线的含义了解平面向量的基本定理掌握正交分解及坐标表示、会用坐标表示平面向量的加减及数乘运算

  第16周

  12.14~12.20

  平面向量的基本定理及坐标表示,平面向量的数量积,

  理解用坐标表示的平面向量共线的条件,理解平面向量数量积德含义及其物理意义,体会平面向量数量积与向量投影的关系,掌握数量积的坐标表达式,会进行平面,向量数量积的运算、求夹角、及垂直关系

  第17周

  12.21~12.27

  平面向量应用举例,

  小结

  用向量方法解决莫些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种几何问题,物理问题的工具,发展运算能力和解决实际问题的能力

  第18周

  12.28~1.3

  两角和与差点正弦、余弦和正切公式

  能以两角差点余弦公式导出两角和与差点正弦、余弦和正切公式,二倍角的正弦、余弦和正切公式,了解它们的内在联系

  第19周

  1.4~1.10

  简单的三角恒等变换

  期末复习

高一数学教学计划11

  本学期担任高一(9)(10)两班的数学教学工作,两班学生共有120人,初中的基础参差不齐,但两个班的学生整体水平不高;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。

  一、指导思想:

  使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

  1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  二、教学目标.

  (一)情意目标

  (1)通过分析问题的方法的教学,培养学生的学习的兴趣。

  (2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识

  (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

  (5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

  (6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。

  (二)能力要求培养学生记忆能力。

  (1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

  (3)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力。

  2、培养学生的运算能力。

  (1)通过概率的训练,培养学生的运算能力。

  (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

  (3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

  (4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

  (5)利用数形结合,另辟蹊径,提高学生运算能力。

  三、学生在数学学习上存在的主要问题

  我校高一学生在数学学习上存在不少问题,这些问题主要表现在以下方面:

  1、进一步学习条件不具备.高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高.如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等.客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。

  2、被动学习.许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。不知道或不明确学习数学应具有哪些学习方法和学习策略;老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背.也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

【高一数学教学计划】相关文章:

高一数学教学计划(15篇)12-26

高一上学期数学教学计划12-01

生活数学教学计划11-17

初中数学教学计划10-30

趣味数学教学计划08-25

高一物理教学计划07-26

高一数学教学反思08-09

高一数学教学总结10-12

数学教学计划(15篇)11-07

中学数学教学计划11-04